Chứng minh các phương trình sau có nghiệm duy nhất | Bostonenglish.edu.vn

Chứng minh các phương trình sau có nghiệm duy nhất. Bài 1.6 trang 8 Sách bài tập (SBT) Giải tích 12 – Bài 1. Sự đồng biến nghịch biến của hàm số

Chứng minh các phương trình sau có nghiệm duy nhất

a) (3(c{rm{os x  –  1)  + }}{rm{2sin x  + 6x  =  0}})

b)  (4x + c{rm{os x  –  2sin x  –  2  =  0}})

c) ( – {x^3} + {x^2} – 3x + 2 = 0$) 

d) ({x^5} + {x^3} – 7 = 0)

Hướng dẫn làm bài

a) Đặt y = 3(cos x – 1) + 2sin x + 6

Hàm số xác định, liên tục và có đạo hàm tại mọi x ∈  R

Ta có: y( ) = 0 và ý = -3sin x + 2cos x + 6 >0,  x ∈  R.

Hàm số đồng biến trên R và có một nghiệm (x = pi )

Vậy phương trình đã cho có một nghiệm duy nhất.

b) Đặt (y = 4x + cos x – 2sin x – 2)

Hàm số xác định, liên tục và có đạo hàm tại mọi x ∈ R

Ta có: y(0) = 1 – 2 = -1 < 0 ; (y(pi ) = 4pi  – 3 > 0) .

Hàm số liên tục trên  ({rm{[}}0;pi {rm{]}}) và y’(0) < 0 nên tồn tại ({x_0} in (0;pi )) sao cho (y({x_0}) = 0) .

Suy ra phương trình có một nghiệm ({x_0}) .

Quảng cáo

c) Đặt y =  – x3 + x2 – 3x + 2

Hàm số xác định, liên tục và có đạo hàm trên R.

Ta có: y’ = – x2 + 2x – 3 < 0, (y(pi ) = 4pi  – 3 > 0), x ∈ R.

Vì a = -3 < 0 và . Suy ra y nghịch biến trên R.

Mặt khác  y(-1) = 1 + 1 +3 + 2 = 7 > 0

See also  Lập trình menu chuột phải bằng VBA trong Excel

                 y(1) = -1  +1 – 3 + 2 = -1 < 0

Hàm số liên tục trên [-1; 1] và y(-1)y(1) < 0 cho nên tồn tại ({x_0} in {rm{[}} – 1;1]) sao cho (y({x_0}) = 0) .

Suy ra phương trình đã cho có đúng một nghiệm.

d) Đặt  y = x5 + x3 – 7

Hàm số xác định, liên tục và có đạo hàm trên R.

Ta có: y(0) = -7 < 0 ; y(2) = 32 + 8 – 7 = 33 > 0

Hàm số liên tục trên [0; 2] và y(0) y(2) < 0 cho nên tồn tại ({x_0} in (0;2)) sao cho (y({x_0}) = 0)

Mặt khác (y’ = 5{x^4} + 3{x^2} = {x^2}(5{x^2} + 3) ge 0,forall x in R)

=> Hàm số đồng biến trên (( – infty ; + infty )).

Suy ra phương trình đã cho có đúng một nghiệm. 

See more articles in the category: Wiki

Leave a Reply